3.444 \(\int \cot ^6(c+d x) (a+b \tan (c+d x))^3 \, dx\)

Optimal. Leaf size=157 \[ \frac{a \left (a^2-3 b^2\right ) \cot ^3(c+d x)}{3 d}+\frac{b \left (3 a^2-b^2\right ) \cot ^2(c+d x)}{2 d}-\frac{a \left (a^2-3 b^2\right ) \cot (c+d x)}{d}+\frac{b \left (3 a^2-b^2\right ) \log (\sin (c+d x))}{d}-a x \left (a^2-3 b^2\right )-\frac{11 a^2 b \cot ^4(c+d x)}{20 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))}{5 d} \]

[Out]

-(a*(a^2 - 3*b^2)*x) - (a*(a^2 - 3*b^2)*Cot[c + d*x])/d + (b*(3*a^2 - b^2)*Cot[c + d*x]^2)/(2*d) + (a*(a^2 - 3
*b^2)*Cot[c + d*x]^3)/(3*d) - (11*a^2*b*Cot[c + d*x]^4)/(20*d) + (b*(3*a^2 - b^2)*Log[Sin[c + d*x]])/d - (a^2*
Cot[c + d*x]^5*(a + b*Tan[c + d*x]))/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.277536, antiderivative size = 157, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3565, 3628, 3529, 3531, 3475} \[ \frac{a \left (a^2-3 b^2\right ) \cot ^3(c+d x)}{3 d}+\frac{b \left (3 a^2-b^2\right ) \cot ^2(c+d x)}{2 d}-\frac{a \left (a^2-3 b^2\right ) \cot (c+d x)}{d}+\frac{b \left (3 a^2-b^2\right ) \log (\sin (c+d x))}{d}-a x \left (a^2-3 b^2\right )-\frac{11 a^2 b \cot ^4(c+d x)}{20 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^6*(a + b*Tan[c + d*x])^3,x]

[Out]

-(a*(a^2 - 3*b^2)*x) - (a*(a^2 - 3*b^2)*Cot[c + d*x])/d + (b*(3*a^2 - b^2)*Cot[c + d*x]^2)/(2*d) + (a*(a^2 - 3
*b^2)*Cot[c + d*x]^3)/(3*d) - (11*a^2*b*Cot[c + d*x]^4)/(20*d) + (b*(3*a^2 - b^2)*Log[Sin[c + d*x]])/d - (a^2*
Cot[c + d*x]^5*(a + b*Tan[c + d*x]))/(5*d)

Rule 3565

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - D
ist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a^2*d*(b*d*(
m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3
*a*b^2*d)*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*(n + 1)))*Tan[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Gt
Q[m, 2] && LtQ[n, -1] && IntegerQ[2*m]

Rule 3628

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2
)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - C) - (A*b - a*B - b*C)*Tan[e +
 f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2
 + b^2, 0]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot ^6(c+d x) (a+b \tan (c+d x))^3 \, dx &=-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))}{5 d}+\frac{1}{5} \int \cot ^5(c+d x) \left (11 a^2 b-5 a \left (a^2-3 b^2\right ) \tan (c+d x)-b \left (4 a^2-5 b^2\right ) \tan ^2(c+d x)\right ) \, dx\\ &=-\frac{11 a^2 b \cot ^4(c+d x)}{20 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))}{5 d}+\frac{1}{5} \int \cot ^4(c+d x) \left (-5 a \left (a^2-3 b^2\right )-5 b \left (3 a^2-b^2\right ) \tan (c+d x)\right ) \, dx\\ &=\frac{a \left (a^2-3 b^2\right ) \cot ^3(c+d x)}{3 d}-\frac{11 a^2 b \cot ^4(c+d x)}{20 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))}{5 d}+\frac{1}{5} \int \cot ^3(c+d x) \left (-5 b \left (3 a^2-b^2\right )+5 a \left (a^2-3 b^2\right ) \tan (c+d x)\right ) \, dx\\ &=\frac{b \left (3 a^2-b^2\right ) \cot ^2(c+d x)}{2 d}+\frac{a \left (a^2-3 b^2\right ) \cot ^3(c+d x)}{3 d}-\frac{11 a^2 b \cot ^4(c+d x)}{20 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))}{5 d}+\frac{1}{5} \int \cot ^2(c+d x) \left (5 a \left (a^2-3 b^2\right )+5 b \left (3 a^2-b^2\right ) \tan (c+d x)\right ) \, dx\\ &=-\frac{a \left (a^2-3 b^2\right ) \cot (c+d x)}{d}+\frac{b \left (3 a^2-b^2\right ) \cot ^2(c+d x)}{2 d}+\frac{a \left (a^2-3 b^2\right ) \cot ^3(c+d x)}{3 d}-\frac{11 a^2 b \cot ^4(c+d x)}{20 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))}{5 d}+\frac{1}{5} \int \cot (c+d x) \left (5 b \left (3 a^2-b^2\right )-5 a \left (a^2-3 b^2\right ) \tan (c+d x)\right ) \, dx\\ &=-a \left (a^2-3 b^2\right ) x-\frac{a \left (a^2-3 b^2\right ) \cot (c+d x)}{d}+\frac{b \left (3 a^2-b^2\right ) \cot ^2(c+d x)}{2 d}+\frac{a \left (a^2-3 b^2\right ) \cot ^3(c+d x)}{3 d}-\frac{11 a^2 b \cot ^4(c+d x)}{20 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))}{5 d}+\left (b \left (3 a^2-b^2\right )\right ) \int \cot (c+d x) \, dx\\ &=-a \left (a^2-3 b^2\right ) x-\frac{a \left (a^2-3 b^2\right ) \cot (c+d x)}{d}+\frac{b \left (3 a^2-b^2\right ) \cot ^2(c+d x)}{2 d}+\frac{a \left (a^2-3 b^2\right ) \cot ^3(c+d x)}{3 d}-\frac{11 a^2 b \cot ^4(c+d x)}{20 d}+\frac{b \left (3 a^2-b^2\right ) \log (\sin (c+d x))}{d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))}{5 d}\\ \end{align*}

Mathematica [C]  time = 0.942461, size = 152, normalized size = 0.97 \[ -\frac{-\frac{1}{3} a \left (a^2-3 b^2\right ) \cot ^3(c+d x)-\frac{1}{2} b \left (3 a^2-b^2\right ) \cot ^2(c+d x)+a \left (a^2-3 b^2\right ) \cot (c+d x)+\frac{3}{4} a^2 b \cot ^4(c+d x)+\frac{1}{5} a^3 \cot ^5(c+d x)-\frac{1}{2} (b+i a)^3 \log (-\cot (c+d x)+i)+\frac{1}{2} (-b+i a)^3 \log (\cot (c+d x)+i)}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^6*(a + b*Tan[c + d*x])^3,x]

[Out]

-((a*(a^2 - 3*b^2)*Cot[c + d*x] - (b*(3*a^2 - b^2)*Cot[c + d*x]^2)/2 - (a*(a^2 - 3*b^2)*Cot[c + d*x]^3)/3 + (3
*a^2*b*Cot[c + d*x]^4)/4 + (a^3*Cot[c + d*x]^5)/5 - ((I*a + b)^3*Log[I - Cot[c + d*x]])/2 + ((I*a - b)^3*Log[I
 + Cot[c + d*x]])/2)/d)

________________________________________________________________________________________

Maple [A]  time = 0.056, size = 193, normalized size = 1.2 \begin{align*} -{\frac{{b}^{3} \left ( \cot \left ( dx+c \right ) \right ) ^{2}}{2\,d}}-{\frac{{b}^{3}\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{a{b}^{2} \left ( \cot \left ( dx+c \right ) \right ) ^{3}}{d}}+3\,a{b}^{2}x+3\,{\frac{a{b}^{2}\cot \left ( dx+c \right ) }{d}}+3\,{\frac{a{b}^{2}c}{d}}-{\frac{3\,b{a}^{2} \left ( \cot \left ( dx+c \right ) \right ) ^{4}}{4\,d}}+{\frac{3\,b{a}^{2} \left ( \cot \left ( dx+c \right ) \right ) ^{2}}{2\,d}}+3\,{\frac{b{a}^{2}\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{{a}^{3} \left ( \cot \left ( dx+c \right ) \right ) ^{5}}{5\,d}}+{\frac{{a}^{3} \left ( \cot \left ( dx+c \right ) \right ) ^{3}}{3\,d}}-{\frac{{a}^{3}\cot \left ( dx+c \right ) }{d}}-{a}^{3}x-{\frac{{a}^{3}c}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^6*(a+b*tan(d*x+c))^3,x)

[Out]

-1/2/d*b^3*cot(d*x+c)^2-1/d*b^3*ln(sin(d*x+c))-1/d*a*b^2*cot(d*x+c)^3+3*a*b^2*x+3/d*a*b^2*cot(d*x+c)+3/d*a*b^2
*c-3/4*a^2*b*cot(d*x+c)^4/d+3/2*a^2*b*cot(d*x+c)^2/d+3*a^2*b*ln(sin(d*x+c))/d-1/5/d*a^3*cot(d*x+c)^5+1/3*a^3*c
ot(d*x+c)^3/d-a^3*cot(d*x+c)/d-a^3*x-1/d*a^3*c

________________________________________________________________________________________

Maxima [A]  time = 1.61354, size = 213, normalized size = 1.36 \begin{align*} -\frac{60 \,{\left (a^{3} - 3 \, a b^{2}\right )}{\left (d x + c\right )} + 30 \,{\left (3 \, a^{2} b - b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 60 \,{\left (3 \, a^{2} b - b^{3}\right )} \log \left (\tan \left (d x + c\right )\right ) + \frac{60 \,{\left (a^{3} - 3 \, a b^{2}\right )} \tan \left (d x + c\right )^{4} + 45 \, a^{2} b \tan \left (d x + c\right ) - 30 \,{\left (3 \, a^{2} b - b^{3}\right )} \tan \left (d x + c\right )^{3} + 12 \, a^{3} - 20 \,{\left (a^{3} - 3 \, a b^{2}\right )} \tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{5}}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^6*(a+b*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/60*(60*(a^3 - 3*a*b^2)*(d*x + c) + 30*(3*a^2*b - b^3)*log(tan(d*x + c)^2 + 1) - 60*(3*a^2*b - b^3)*log(tan(
d*x + c)) + (60*(a^3 - 3*a*b^2)*tan(d*x + c)^4 + 45*a^2*b*tan(d*x + c) - 30*(3*a^2*b - b^3)*tan(d*x + c)^3 + 1
2*a^3 - 20*(a^3 - 3*a*b^2)*tan(d*x + c)^2)/tan(d*x + c)^5)/d

________________________________________________________________________________________

Fricas [A]  time = 1.82719, size = 412, normalized size = 2.62 \begin{align*} \frac{30 \,{\left (3 \, a^{2} b - b^{3}\right )} \log \left (\frac{\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right )^{5} + 15 \,{\left (9 \, a^{2} b - 2 \, b^{3} - 4 \,{\left (a^{3} - 3 \, a b^{2}\right )} d x\right )} \tan \left (d x + c\right )^{5} - 60 \,{\left (a^{3} - 3 \, a b^{2}\right )} \tan \left (d x + c\right )^{4} - 45 \, a^{2} b \tan \left (d x + c\right ) + 30 \,{\left (3 \, a^{2} b - b^{3}\right )} \tan \left (d x + c\right )^{3} - 12 \, a^{3} + 20 \,{\left (a^{3} - 3 \, a b^{2}\right )} \tan \left (d x + c\right )^{2}}{60 \, d \tan \left (d x + c\right )^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^6*(a+b*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

1/60*(30*(3*a^2*b - b^3)*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c)^5 + 15*(9*a^2*b - 2*b^3 - 4*(a^
3 - 3*a*b^2)*d*x)*tan(d*x + c)^5 - 60*(a^3 - 3*a*b^2)*tan(d*x + c)^4 - 45*a^2*b*tan(d*x + c) + 30*(3*a^2*b - b
^3)*tan(d*x + c)^3 - 12*a^3 + 20*(a^3 - 3*a*b^2)*tan(d*x + c)^2)/(d*tan(d*x + c)^5)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**6*(a+b*tan(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.96325, size = 500, normalized size = 3.18 \begin{align*} \frac{6 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 45 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 70 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 120 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 540 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 120 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 660 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1800 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 960 \,{\left (a^{3} - 3 \, a b^{2}\right )}{\left (d x + c\right )} - 960 \,{\left (3 \, a^{2} b - b^{3}\right )} \log \left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right ) + 960 \,{\left (3 \, a^{2} b - b^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - \frac{6576 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 2192 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 660 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 1800 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 540 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 120 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 70 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 120 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 45 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 6 \, a^{3}}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5}}}{960 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^6*(a+b*tan(d*x+c))^3,x, algorithm="giac")

[Out]

1/960*(6*a^3*tan(1/2*d*x + 1/2*c)^5 - 45*a^2*b*tan(1/2*d*x + 1/2*c)^4 - 70*a^3*tan(1/2*d*x + 1/2*c)^3 + 120*a*
b^2*tan(1/2*d*x + 1/2*c)^3 + 540*a^2*b*tan(1/2*d*x + 1/2*c)^2 - 120*b^3*tan(1/2*d*x + 1/2*c)^2 + 660*a^3*tan(1
/2*d*x + 1/2*c) - 1800*a*b^2*tan(1/2*d*x + 1/2*c) - 960*(a^3 - 3*a*b^2)*(d*x + c) - 960*(3*a^2*b - b^3)*log(ta
n(1/2*d*x + 1/2*c)^2 + 1) + 960*(3*a^2*b - b^3)*log(abs(tan(1/2*d*x + 1/2*c))) - (6576*a^2*b*tan(1/2*d*x + 1/2
*c)^5 - 2192*b^3*tan(1/2*d*x + 1/2*c)^5 + 660*a^3*tan(1/2*d*x + 1/2*c)^4 - 1800*a*b^2*tan(1/2*d*x + 1/2*c)^4 -
 540*a^2*b*tan(1/2*d*x + 1/2*c)^3 + 120*b^3*tan(1/2*d*x + 1/2*c)^3 - 70*a^3*tan(1/2*d*x + 1/2*c)^2 + 120*a*b^2
*tan(1/2*d*x + 1/2*c)^2 + 45*a^2*b*tan(1/2*d*x + 1/2*c) + 6*a^3)/tan(1/2*d*x + 1/2*c)^5)/d